## -continued

| Asn | Thr | Lys | Val | Asp<br>215 | Lys | Lys | Val | Glu | Pro<br>220          | Lys | Ser | Cys | Asp | L <b>y</b> s<br>225 |
|-----|-----|-----|-----|------------|-----|-----|-----|-----|---------------------|-----|-----|-----|-----|---------------------|
| Thr | His | Thr | Cys | Pro<br>230 | Pro | Cys | Pro | Ala | Pro<br>235          | Glu | Leu | Leu | Gly | Gly<br>240          |
| Pro | Ser | Val | Phe | Leu<br>245 | Phe | Pro | Pro | Lys | Pro<br>250          | Lys | Asp | Thr | Leu | Met<br>255          |
| Ile | Ser | Arg | Thr | Pro<br>260 | Glu | Val | Thr | Суѕ | Val<br>265          | Val | Val | Asp | Val | Ser<br>270          |
| His | Glu | Asp | Pro | Glu<br>275 | Val | Lys | Phe | Asn | Trp<br>280          | Tyr | Val | Asp | Gly | Val<br>285          |
| Glu | Val | His | Asn | Ala<br>290 | Lys | Thr | Lys | Pro | Arg<br>295          | Glu | Glu | Gln | Tyr | Asn<br>300          |
| Ser | Thr | Tyr | Arg | Val<br>305 | Val | Ser | Val | Leu | Thr<br>310          | Val | Leu | His | Gln | Asp<br>315          |
| Trp | Leu | Asn | Gly | Lys<br>320 | Glu | Tyr | Lys | Cys | Lys<br>325          | Val | Ser | Asn | Lys | Ala<br>330          |
| Leu | Pro | Ala | Pro | Ile<br>335 | Glu | Lys | Thr | Ile | Ser<br>340          | Lys | Ala | Lys | Gly | Gln<br>345          |
| Pro | Arg | Glu | Pro | Gln<br>350 | Val | Tyr | Thr | Leu | Pro<br>355          | Pro | Ser | Arg | Glu | Glu<br>360          |
| Met | Thr | Lys | Asn | Gln<br>365 | Val | Ser | Leu | Thr | C <b>y</b> s<br>370 | Leu | Val | Lys | Gly | Phe<br>375          |
| Tyr | Pro | Ser | Asp | Ile<br>380 | Ala | Val | Glu | Trp | Glu<br>385          | Ser | Asn | Gly | Gln | Pro<br>390          |
| Glu | Asn | Asn | Tyr | Lys<br>395 | Thr | Thr | Pro | Pro | Val<br>400          | Leu | Asp | Ser | Asp | Gly<br>405          |
| Ser | Phe | Phe | Leu | Tyr<br>410 | Ser | Lys | Leu | Thr | Val<br>415          | Asp | Lys | Ser | Arg | Trp<br>420          |
| Gln | Gln | Gly | Asn | Val<br>425 | Phe | Ser | Cys | Ser | Val<br>430          | Met | His | Glu | Ala | Leu<br>435          |
| His | Asn | His | Tyr | Thr<br>440 | Gln | Lys | Ser | Leu | Ser<br>445          | Leu | Ser | Pro | Gly |                     |

What is claimed is:

- 1. A method for purifying a polypeptide from a composition comprising the polypeptide and a deamidated variant thereof, which method comprises the following steps performed sequentially:
  - (a) binding the polypeptide and deamidated variant to an ion exchange material using a loading buffer, wherein the loading buffer is at a first conductivity and pH;
  - (b) washing the ion exchange material with an intermediate buffer at a second conductivity and/or pH so as to elute the deamidated variant from the ion exchange material;
  - (c) washing the ion exchange material with a wash buffer which is at a third conductivity and/or pH, wherein the change in conductivity and/or pH from the intermediate buffer to the wash buffer is in an opposite
  - direction to the change in conductivity and/or pH from the loading buffer to the intersediate buffer; and
  - (d) washing the ion exchange material with an elution buffer at a fourth conductivity and/or pH so as to elute the polypeptide from the ion exchange material.
- 2. The method of claim 1 wherein the ion exchange material comprises a cation exchange resin.

- 3. The method of claim 2 wherein the conductivity and/or pH of the intermediate buffer is/are greater than the conductivity and/or pH of the loading buffer and the conductivity and/or pH of the wash buffer is/are less than the conductivity and/or pH of the intermediate buffer.
- 4. The method of claim 2 wherein the conductivity and/or pH of the elution, buffer is/are greater than the conductivity and/or pH of the intermediate buffer.
- 5. The method of claim 2 wherein the cation exchange resin comprises sulphopropyl immobilized on agarose.
- 6. The method of claim 1 wherein the ion exchange 55 material comprises an anion exchange resin.
  - 7. The method of claim 1 wherein the conductivity and/or pH of the wash buffer is/are about the same as the conductivity and/or pH of the loading buffer.
- 8. The method of claim 1 wherein elution of the deami-60 dated variant and of the polypeptide is achieved by modifying the conductivity of the intermediate buffer and of the elution buffer, respectively.
  - 9. The method of claim 8 herein the pH remains approximately constant for each of steps (a)–(d).
  - 10. The method of claim 8 wherein the conductivity of the intermediate buffer and of the elution buffer is modified by changing the salt concentration therein.